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Parthenogenesis is rare in nature. With 39 described true parthenogens,
scaled reptiles (Squamata) are the only vertebrates that evolved this repro-
ductive strategy. Parthenogenesis is ecologically advantageous in the short
term, but the young age and rarity of parthenogenetic species indicate it is
less advantageous in the long term. This suggests parthenogenesis is self-
destructive: it arises often but is lost due to increased extinction rates, high
rates of reversal or both. However, this role of parthenogenesis as a self-
destructive trait remains unknown. We used a phylogeny of Squamata
(5388 species), tree metrics, null simulations and macroevolutionary scen-
arios of trait diversification to address the factors that best explain the
rarity of parthenogenetic species. We show that parthenogenesis can be con-
sidered as self-destructive, with high extinction rates mainly responsible for
its rarity in nature. Since these parthenogenetic species occur, this trait
should be ecologically relevant in the short term.
1. Background
Asexual reproduction in vertebrates is rare. It occurs in squamates, fish, sala-
manders and frogs through gynogenesis, hybridogenesis, kleptogenesis and
parthenogenesis [1]. While the former three mechanisms require male fertiliza-
tion, in parthenogenesis, the embryo develops from a female gamete alone.
Particularly, true/constitutive parthenogenesis (i.e. sperm-independent asexual
reproduction) is even rarer: it occurs solely in scaled reptiles (order Squamata;
e.g. [1–4]) from the successful hybridization between genetically distant species
[1,5,6]. The explanation for the macroevolutionary rarity of parthenogenesis in
vertebrates remains elusive [1,4,7]. We focus on parthenogenesis, although most
aspects also apply to asexual vertebrates as we highlight below. Unless stated
otherwise, we use ‘asexual’ for overall asexuality, ‘parthenogen’ for true/
constitutive parthenogenesis and ‘species’ for each evolutionary unit in a
phylogeny (i.e. evolutionary species concept [8]). Although the term ‘species’
has different meanings between reproductive modes, asexual species share
some characteristics with sexual species (e.g. they evolve independently and
each individual is more closely related to an individual of the same species
than to individuals of a different species [9]).

The relatively young age and small number of parthenogenetic vertebrate
species suggest that asexuality is evolutionarily disadvantageous in the long
term [10]. It rather functions as a short-term successful ecological strategy
[4,11] (reviewed in [1]). No ancient species-rich clade of asexual species is
known to occur in nature; only distantly related species [4,6]. This can result
from clones’ high extinction rates in the long term due to low recombination—
Muller’s Ratchet [12]. The lack of DNA-repair meiotic mechanisms can also
hinder asexual long-term viability [13] (however, asexual vertebrates can have
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2Table 1. Estimates of four tree metrics on the consensus tree (n = 5388).
Significant values ( p < 0.05/p > 0.95 for TARS, NoTO and SSCD; FPD > 0.5)
are boldfaced.

metric consensus tree

tip age rank sum (PTARS) 32576.0 (<0.001)

number of tips per origin (PNoTO) 1.278 (0.278)

sum of sister clade differences (PSSCD) 35.376 (0.103)

Fritz & Purvis D statistic 0.401
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functional meiosis [14,15]). Finally, asexual species’ low
genetic diversity [1,5] could hinder their adaptability to chan-
ging environments [16]. However, if clones’ formation is fast
enough, neutral replacement could take place before their
long-term disadvantages [17,18].

In the short term, asexuality can be ecologically successful.
It can rapidly lead to population increases (i.e. no need for
mating) and range expansions through the colonization of
environments that are unsuitable for the parental species (i.e.
geographic parthenogenesis) [1,5]. When parthenogenetic
populations colonize new and species-poor environments,
they expand their distribution of phenotypes and niche
breadths (i.e. ecological release) [7]. Parthenogenetic lizards
can even outcompete their sexual progenitors in some cases
[19] and have greater aerobic activity at low temperatures [20].

When a trait arises often but increases extinction rates,
leading to short-lived and phylogenetically scattered species,
it is self-destructive [21]. Self-destructive traits are also
labile—frequently gained and lost, particularly when the rate
of reversal (i.e. loss of the trait) is high [21]. Examples include
salt tolerance (increased extinction rates or high trait reversal)
[22] and selfing (high trait reversal) [23] in plants and
colour polymorphism in birds (increased extinction rates)
[24] (but see [21]). Asexuality could be considered a self-
destructive trait [21]; the phylogenetic ‘instability’ suggests
either increased extinction rates, trait lability or both.
However, studies with invertebrates show no negative
impact of asexuality on diversification rates [25,26]. Alterna-
tively, the likelihood for asexual formation through
hybridization could explain this ‘instability’ [5,27]. Successful
hybridization relies on a range of overlap between parental
species, while maintaining enough phylogenetic distance and
genetic compatibility [27–30]. The role of asexuality as a self-
destructive trait remains untested at the macroevolutionary
level for vertebrates.

Squamates are a suitable system for studying the macro-
evolutionary dynamics of asexuality while focusing on
parthenogenesis. There are 39 parthenogenetic squamates
reported so far (e.g. [7]). We used four tree metrics, null simu-
lations and alternative scenarios of trait evolution to test
parthenogenesis as a self-destructive trait in Squamata. First,
we addressed if parthenogenetic species are younger than
sexual species. Parthenogenetic species should be younger
(i) if they arise frequently in nature but are relatively short
lived (higher extinction rates) and (ii) given they generally
originate from hybridization [1]. Second, we compared if
the number of parthenogenetic species per origin of partheno-
genesis is lower than expected. We expect each origin of
parthenogenesis to give rise to fewer than expected partheno-
genetic species. Not only will parthenogenesis formation
depend largely on the amount of range overlap and genetic
diversity between hybridizing species [1]; in a scenario of
self-destruction, parthenogenetic species would frequently
go extinct before possibly radiating. Together, these would
hinder the accumulation of parthenogenetic species per
origin of parthenogenesis. Third, we tested if parthenogenetic
species are clustered or scattered. In a scenario of trait self-
destruction, parthenogenetic species should be scattered
throughout the phylogeny. Finally, we inferred the parameters
responsible for the unstable macroevolutionary pattern of
parthenogenesis under different scenarios. We expect that
increased extinction rates will best explain this pattern given
the long-term limitations of parthenogenesis.
2. Methods
(a) Species data and phylogenies
We identified 39 parthenogenetic species of Squamata from
the literature (see electronic supplementary material, table S1).
We used only species included in [31].

We used the posterior distribution of 10 000 phylogenies of
Squamata with 9754 species each [32]. We pruned all trees
using ape v. 5.3 in R [33] to the species with molecular data in
[32]. The final set of phylogenies included 5388 species. We cal-
culated the 50% majority-rule consensus tree in MrBayes v. 3.2
[34]. The final tree included 23 out of 39 parthenogens (electronic
supplementary material, table S1). We examined the effects of
(i) phylogenetic uncertainty using an alternative tree and
(ii) sampling bias by randomly allocating the state ‘parthenogen’
within each genus where the trait is known to occur (electronic
supplementary material, text S1 and S2).
(b) Phylogenetic metrics
We calculated four tree metrics for the consensus tree: tip age
rank sum (TARS), number of tips per origin (NoTO), sum of
sister clade differences (SSCD) and Fritz & Purvis D statistic
(FPD) [21,35]. We used phylometrics v. 0.01 in R [36] and
tested for significance using the Wilcoxon rank-sum test for
TARS, 1000 traits simulated under Brownian motion (BM) for
NoTO and SSCD, and 1000 traits simulated under BM and
1000 random traits for FPD [21]. When PTARS < 0.05/>0.95,
parthenogenetic species have significantly shorter/longer tip
lengths than sexual species. When PNoTO<0.05/>0.95, each
inferred origin of parthenogenesis (which is placed at the node
for each independent parthenogenetic species or clade of parthe-
nogenetic species) gives rise to fewer/more species than expected
under a stochastic process. When PSSCD<0.05/>0.95, parthenoge-
netic species are more scattered/clustered than expected under a
stochastic process. When absolute values of FPD are closer to 1,
parthenogenetic species are randomly distributed throughout the
phylogeny, while values closer to 0 indicate that the trait evolves
as expected under BM.
(c) Macroevolutionary models
We simulated different scenarios of trait evolution to test the par-
ameters responsible for the macroevolutionary dynamics of
parthenogenesis in squamates. The parameters include speciation
rate for sexual (λ0) and parthenogenetic species (λ1), extinction rate
for sexual (μ0) and parthenogenetic species (μ1), and rates of gain
(q01) or reversal (q10). The initial valueswere 0.1, 0.1, 0.03, 0.03, 0.01
and 0.01 (in units: per million years), respectively [21]. Since the
method uses likelihood estimation, we repeated the analysis
with these values both multiplied and divided by 5.

We simulated nine scenarios for each set of initial parameters
under different constraints: no effect of parthenogenesis on spe-
ciation rates (λ0 = λ1) and/or extinction rates (μ0 = μ1), equal
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3Table 2. Parameter maximum-likelihood estimates under macroevolutionary scenarios of trait evolution (a–i) using the starting parameters for the consensus
tree (n = 5388). Parameters include speciation rates for sexual/parthenogenetic species (λ0/λ1), extinction rates for sexual/parthenogenetic species (μ0/μ1) and
rates of gain/reversal of parthenogenesis (q01/q10). Rejected models are boldfaced (figure 1).

macroevolutionary scenario λ0 λ1 μ0 μ1 q01 q10

(a) no constraints 0.048 0.27 2.0 × 10−8 2.4 × 10−6 1.8 × 10−3 0.30

(b) λ0 = λ1, μ0 = μ1, q01 = q10 0.059 0.059 2.3 × 10−5 2.3 × 10−5 2.1 × 10−4 2.1 × 10−4

(c) λ0 = λ1, μ0 = μ1 0.059 0.059 6.2 × 10−7 6.2 × 10−7 4.2 × 10−4 0.13

(d ) λ0 = λ1, q01 = q10 0.059 0.059 3.3 × 10−5 0.27 8.6 × 10−4 8.6 × 10−4

(e) μ0 = μ1, q01 = q10 0.059 0.085 1.8 × 10−9 1.8 × 10−9 2.1 × 10−4 2.1 × 10−4

( f ) λ0 = λ1 0.059 0.059 2.7 × 10−6 2.5 × 10−5 3.9 × 10−4 0.13

(g) μ0 = μ1 0.048 0.27 2.9 × 10−6 2.9 × 10−6 1.8 × 10−3 0.30

(h) q01 = q10 0.059 0.24 3.4 × 10−7 0.49 1.1 × 10−3 1.1 × 10−3

(i) q10 = 0 0.059 0.13 1.6 × 10−7 0.46 1.2 × 10−3 0
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transition rates (q01 = q10) or no reversals (q10 = 0). The scenarios
include (a) no constraints—parameters can be different between
sexual and parthenogenetic species; (b) λ0 = λ1, μ0 = μ1 and
q01 = q10; (c) λ0 = λ1 and μ0 = μ1; (d ) λ0 = λ1 and q01 = q10; (e) μ0 =
μ1 and q01 = q10; (f ) λ0 = λ1; (g) μ0 = μ1; (h) q01 = q10 and (i) q10 =
0. We fit each model using diversitree v. 0.9-13 in R (table 2;
electronic supplementary material, table S3 and S4) [37].

To obtain a null distribution of tree metrics for the macroevo-
lutionary scenarios, we used the parameters estimated in models
a–i to simulate 100 trees with 5388 species. We then estimated the
tree metrics in the alternative scenarios. p-Values indicate the
proportion of simulated metric values that are lower than or
equal to the observed metric values. Significance was considered
if p≤ 0.01/p≥ 0.99 after a Bonferroni correction [35]. Overall, we
were interested in the relative role of each parameter and not in
the specific fitted values of the rates. We tested for false discovery
rates (model b) and power (models a, c–i) as the proportion
of simulated metric values with p≤ 0.05 for PTARS, PNoTO and
PSSCD, or p > 0.5 for PFPD (electronic supplementary material,
table S11–S13) [21].
3. Results
Parthenogenetic species are significantly younger than sexual
species (PTARS < 0.001; table 1). The number of species that
originate from parthenogenetic ancestors does not differ
from those that originate from a trait evolving under BM
(PNoTO = 0.278). Species are not more scattered across the
phylogeny than expected under BM (PSSCD = 0.103) nor more
randomly distributed (FPD = 0.401). Results were consistent
using an alternative phylogeny and to the impact of missing
taxa (electronic supplementary material, table S2).

Models c, d, f, h and i identify parthenogenesis as self-
destructive either by higher extinction rates compared to
speciation (d, h, i) or high rates of reversal (c, f ) (table 2).
These models were not rejected (figure 1) and parameters
suggest that parthenogenesis in squamates cannot be distin-
guished from a model where this state is frequently lost due
to high extinction rates (d, h, i) or high rates of reversal (c, f ).
Models a and g also have high rates of reversal, but the
speciation rates are higher relative to extinction. Model e
reflects a trait that increases/decreases speciation. Results
were consistent using different initial parameters (electronic
supplementary material, table S3 and S4) and alternative
approaches (electronic supplementary material, text S1 and
S2). We found low false discovery rates and high power to
detect significant effects for each macroevolutionary scenario
(electronic supplementary material, table S11–S13).
4. Discussion
Here, we show that parthenogenesis in squamates can
be considered a macroevolutionary self-destructive trait.
Parthenogenetic species are significantly younger than sexual
species. However, each origin of parthenogenesis does not
give rise to fewer than expected parthenogenetic species. This
could reflect some genera as Darevskia or Aspidoscelis that con-
centrate almost half of the described parthenogenetic
squamates (approx. 46%). Subsequent backcrosses could
explain how each origin of parthenogenesis could give rise to
more than one parthenogenetic species [5,38]. In fact, the
uneven incidence of true parthenogens could explain that
parthenogenesis is not as scattered in the phylogeny as
expected. Only one species of Serpentes (i.e. Indotyphlops brami-
nus) has been described as true parthenogenetic (figure 2). This
suggests a higher tendency for lizards to produce parthenoge-
netic hybrids or biases towards the most studied clades [39].
Null simulations should benefit from increased numbers
of described parthenogenetic species and further motivate
identifying asexual species in nature.

Results from themacroevolutionary scenarios also support
parthenogenesis as self-destructive. At first glance, results
suggest that this trait increases extinction rates or rates of
reversal. However, once asexuality is achieved, reversals to
sexual reproduction would be very difficult [6,40] (but see
[41]), particularly if the genes responsible for sexual traits
(e.g. spermatogenesis and meiosis) degenerate [1,6]. This
suggests that trait lability is not responsible for the ‘unstable’
pattern of parthenogenesis. We do not reject model i that
identifies higher extinction rates in relation to speciation and
null rates of reversal (figure 1). Thus, although high rates of
reversal can also explain similar scenarios of trait evolution,
the difficulty associated with the reversal from asexuality
indicates this should not be the case for parthenogenesis.
Ultimately, parthenogenesis influences extinction rates
(model d ), even when coupled with a smaller effect on specia-
tion rates (models h, i; table 2). While clonal diversity seems
related to the balance between speciation and extinction [42],
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Figure 1. The null distribution of four tree metrics for distinct macroevolutionary scenarios (a–i; coloured histograms) using the starting parameters for the con-
sensus tree (n = 5388). Dashed lines represent the observed metric value. Frequency (%) represents the proportion of simulated metric values that are lower than or
equal to the observed. Significant values ( p≤ 0.01/p ≥ 0.99) are marked with an asterisk (*).
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estimated extinction rates as high as 10−1, exceeding speciation
rates (table 2), suggest that parthenogenetic species would go
extinct before possibly giving rise to additional partheno-
genetic species. Note, however, that these speciation events
are different from those in sexual species as they involve
subsequent backcrosses [5,38]. In practice, new parthenoge-
netic species would reflect new evolutionary units in the
phylogeny. Whenever speciation rates for parthenogenetic
species approaches extinction, the model was rejected
(model h; electronic supplementary material, table S4).

The low frequency of hybridization [5,27] does not seem to
explain the macroevolutionary pattern we observe in
squamates; we reject model e that indicates an effect of parthe-
nogenesis solely on speciation (table 2). Besides, in models h
and i (not rejected) speciation rateswere higher for parthenoge-
netic species. This contradicts the idea of reduced origination
events for parthenogenetic species compared to sexual species.
Also, assuming that each parthenogenetic species originates
only once underestimates the origination rate for asexuality.
Genotyping of Darevskia armeniaca, for example, suggests mul-
tiple interspecific origins betweenD. valentini andD. mixta [43]
(but see [5]). Nevertheless, inmodelswhere the speciation rates
were allowed to vary (models a, e, g–i), speciation rates for
parthenogenetic species were always higher than speciation
rates for sexual species. Models a, e and g were rejected. Models
h and i—indicative of parthenogenesis self-destruction—were
not rejected. Underestimation of parthenogens origination rates
should have little impact on the results.

Neutral replacement of parthenogenetic species is an
alternative explanation to the relative younger age of partheno-
gens. Before becoming extinct due to inherent ecological
hindrances, parthenogenetic species could be younger from
the neutral replacement of existing clones [18,40,44]. Authors
further argue that it is difficult to distinguish neutral
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replacement from increased extinction rates. In a scenario of
clones’ high turnover for each parthenogenetic species, we
would expect the same outcome in our macroevolutionary
models focused on the TARS metric (i.e. parthenogenetic
species are younger than sexual species). Also, we would
expect higher clone turnover to influence the numberof parthe-
nogenetic species per origin of parthenogenesis and the
parthenogenetic species clustering. Specifically, if clones’ neu-
tral turnover continuously replaces older clones, this prevents
them from ageing. Subsequently, this would decrease the
chance for new parthenogenetic species to establish and form
species clusters. Importantly, authors focus on the within-
species level to distinguish processes occurring at the micro
from the macroevolutionary level. Here we use a combination
of macroevolutionary metrics that focus on interspecific age
comparisons, origination events, species clustering and
simulations of alternative scenarios of trait evolution.

Asexuality is not a simple phenomenon.We used partheno-
genetic species alone and simplified some aspects of
hybridizing species.We considered parthenogens at the species
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level (but see [9]) and we did not account for backcrossing [5]
or the complex reticulate topology in some genera [38]. By
simplifying the models, we focused on the macroevolutionary
dynamics of parthenogenesis in squamates rather than the
microevolutionary mechanisms underlying parthenogenesis.
Our results suggest that parthenogenesis could be self-
destructive in the long term, possibly explaining the ‘unstable’
pattern observed for parthenogenesis in Squamata.
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