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Abstract
Identifying the role of quantitative variables on speciation rates is among the main purposes of trait-dependent diversification 
methods. ES-sim, a recent simulation-based approach that relies on Pearson’s correlations, allows testing trait-dependent 
diversification for single regression models. Here, we modified this approach to include generalized linear models and two 
independent variables. To examine the effects of multiple traits on speciation we modified ES-sim and integrated generalized 
linear models instead of Pearson’s correlations. We named the new approach as ES-sim-GLM. We further evaluated how 
this modified method performs in both single and multiple regression modelling. For this, we analyzed the relationship of 
speciation rates with geographic range size and snout-to-vent length in 216 species from the family Liolaemidae, a South 
American radiation of Andean lizards. Based on simulations, ES-sim-GLM for single regression models shows high power, 
low false discovery rates and is robust to incomplete taxon sampling. ES-sim-GLM for multiple regression models shows 
lower power but also low false-discovery rates. Both remained computationally efficient. Using Liolaemidae data, we found 
that larger species but with smaller species geographic range sizes were associated with higher speciation rates. To the best 
of our knowledge, no study as addressed these relationships in this clade. Our results provide new insights on macroevolu-
tionary methods that should be relevant to all organisms and facilitate future studies that aim to understand diversification 
patterns across the Tree of Life.
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Introduction

Species’ diversification is tightly connected with indi-
vidual traits, including body size (Gittleman & Purvis, 
1998), dispersal ability (Claramunt et al., 2012), ecologi-
cal specialization (Futuyma & Moreno, 1988) and latitudi-
nal range (Cardillo, 1999; reviewed in Harvey & Rabosky, 

2018). To examine these relationships, powerful methods 
have been developed over the years. The quantitative 
state speciation and extinction model (QuaSSE; FitzJohn, 
2010), one of the most popular methods, has been widely 
used to detect the relationship between diversification and 
quantitative traits. Although partitioning the phylogeny to 
account for shifts in speciation rate can provide reliable 
results (e.g. Rojas et al., 2018), other models in QuaSSE 
have been associated with high false discovery rates (Fitz-
John, 2010; Harvey & Rabosky, 2018; Machac, 2014). In 
addition, methods like HiSSE account for the limitations 
of other state-dependent speciation methods (Beaulieu & 
O’Meara, 2016). While the latter can account for unmeas-
ured factors impacting diversification, there are some alter-
natives that are less computationally demanding, including 
tip-rate correlation tests. Such methods usually involve the 
use of a speciation rate metric, followed by a statistical 
test for the correlation between speciation rates and a trait. 
This can be done, for example, using phylogenetic gener-
alized least squared models (PGLS; e.g. Freckleton et al., 
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2008; Gomes et al., 2016; Jetz et al., 2012). More recently, 
Harvey and Rabosky (2018) introduced a simulation-based 
approach (ES-sim) that shows low false discovery rates 
and high power to detect trait-dependent diversification. 
Overall, these tools help to disentangle possible relation-
ships between traits and species diversification.

The method introduced by Harvey and Rabosky (2018) 
allows to examine trait-dependent diversification at the 
species-level and outperforms QuaSSE and PGLS-based 
approaches in detecting true relationships between specia-
tion rates and species traits. Specifically, ES-sim shows 
lower false discovery rates when compared to QuaSSE, 
as well as higher power when compared to PGLS-based 
approaches (Harvey & Rabosky, 2018). First, ES-sim 
focus on the inverse of the equal-splits metric (hereafter, 
λ; Redding & Mooers, 2006). The metric λ is accurate 
for estimating speciation rates (but not diversification or 
extinction rates; Title & Rabosky, 2019). Afterwards, the 
function simulates under Brownian Motion a null distribu-
tion of traits based on the input-trait n times. Finally, the 
method uses Pearson’s correlations to assess the signifi-
cance of the relationship between speciation rates (λ) and 
the trait. This is done by comparing the true correlation 
coefficient (i.e. λ ~ input-trait) with the distribution of cor-
relation coefficients obtained for each simulated trait (i.e. 
λ ~ n simulated-trait). Overall, ES-sim is accurate (i.e. it 
has low false discovery rates) under different diversifica-
tion scenarios and has high power (> 0.9) for moderate 
(n = 250) and large trees (n = 1250; Harvey & Rabosky, 
2018). Notwithstanding, ES-sim is currently restricted to 
a single model that assess the relationship between specia-
tion rates and a single trait. Although the method has the 
potential to incorporate multiple independent traits and 
different functional relationships between speciation rate 
and traits, these implementations have not been developed 
yet.

In this paper we modify ES-sim to include two inde-
pendent variables by using generalized linear models. We 
name this new approach ES-sim-GLM and show that it 
is robust under incomplete taxon sampling and multiple 
scenarios of trait-dependent diversification, including 
multiple regression modelling. We apply ES-sim-GLM 
to analyse the relationship between speciation, species 
geographic range size and body size in Liolaemidae. 
This family of lizards (322 species described so far; Uetz 
et al., 2020) offers a useful system for studying the role 
of niche differentiation on diversification. The family is 
a well-studied adaptive radiation in South America (e.g. 
Esquerré et al., 2019; Pincheira-Donoso et al., 2015) and 
one of the main examples to study how the Andes uplift 
have shaped diversification (Esquerré et al., 2019). We 
found that species geographic range size and body size 
metrics are associated with speciation rates in Liolaemidae 

and demonstrate how ES-sim-GLM can account for the 
coupled effect of two traits on speciation.

Methods

ES‑sim‑GLM

The original ES-sim function (Harvey & Rabosky, 2018) 
allows testing for trait-dependent diversification for one 
variable only. To test two variables simultaneously we 
modified the ES-sim test to incorporate generalized linear 
models (ES-sim-GLM). Specifically, the main objective 
of ES-sim-GLM is to test for the coupled effect of two 
independent variables on speciation. We assessed the per-
formance of this modification in terms of power (section 
‘Power Analyses’) and false-discovery rates (section ‘False 
Discovery Rates’). Afterwards, and using ES-sim-GLM, 
we tested single and multiple-variable regression models 
of λ against species geographic range size and body size 
of Liolaemidae (section ‘Statistical Analyses’).

Similar to the original function (i.e. ES-sim; Harvey 
& Rabosky, 2018), ES-sim-GLM uses the ln-transformed 
inverse of the equal-splits metric (Jetz et al., 2012; Red-
ding & Mooers, 2006). This metric of speciation is esti-
mated using the full root-to-tip topology of the phylog-
eny, adding more weight to the recent branching patterns 
(Harvey & Rabosky, 2018). The metric provides a value 
of speciation rate for every tip of the phylogenetic tree. 
Afterwards, ES-sim-GLM fits a Brownian motion model to 
obtain diffusion rates and root state estimates for the trait 
under analysis. Then, we used this information to simu-
late the new set of trait values under a Brownian motion 
model of evolution. We used 1000 simulations to create 
the null-distribution of simulated trait values in the ES-sim 
and ES-sim-GLM functions. To account for two variables, 
we repeated these steps to simulate a new and independ-
ent null-distribution of trait values for each trait added to 
the function. The P value is calculated as the proportion 
of coefficient estimates (i.e. intercept and slope) obtained 
from the null-distribution of trait values that are higher 
than or lower than the coefficient estimates obtained when 
using the trait of interest. We consider parameter effects 
significant if they had a P < 0.05. To compare the relative 
fit of models we used Akaike weights  (AICW; Burnham & 
Anderson, 2002). We estimated r2 values for the ES-sim-
GLM models as 1 minus the ratio between the residual 
deviance and the null deviance (Guisan & Zimmermann, 
2000). We also calculated the running time for each func-
tion in single and multiple regression models for different 
tree sizes (i.e. 50, 100, 250, 1250 tips; Fig. S1).
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Power Analyses

We assessed the performance of ES-sim-GLM single regres-
sion modelling for trees with different numbers of species, 
and compared its performance to ES-sim (as in Harvey & 
Rabosky, 2018). First, we simulated four hypothetical data-
sets with state-dependent diversification using the diver-
sitree v0.9-11 package in R (FitzJohn, 2012). The datasets 
included states of a continuous trait for the tips of the trees. 
Each dataset included 100 trees with 50, 100, 250 and 1250 
tips. To simulate state-dependent diversification, the linear 
function relating speciation rate to trait values had a slope 
of 0.004 and extinction rates were kept constant at 0 (i.e. no 
extinction), the default values used in Harvey and Rabosky 
(2018). We simulated the trait values using a diffusion rate 
of trait change of 0.06, given that ES-sim performs better 
at intermediate values of this parameter (based on compar-
ing values of 0.00006, 0.0006, 0.006, 0.06, 0.6, 6, and 60; 
Harvey & Rabosky, 2018). To assess power, we ran ES-sim-
GLM using the simulated datasets and calculated the propor-
tion of datasets for which the function correctly identified 
state-dependent diversification. The higher the proportion 
of datasets for which ES-sim-GLM correctly identifies trait-
dependent diversification, the higher the power of the test.

We then tested how the intensity of the relationship 
between speciation rate and the trait affected the ability of 
ES-sim-GLM to correctly identify trait-dependent diversifi-
cation. We also did this for the original ES-sim method. We 
simulated two new datasets using two different values of the 
slope (0.04 and 0.4; for the linear function relating specia-
tion rate to trait values) for each tree size and performed the 
power analyses. We selected 0.04 and 0.4 to represent differ-
ent orders of magnitude relative to the original value (0.004).

Finally, we tested how ES-sim and ES-sim-GLM per-
formed with incomplete taxon sampling. We randomly 
pruned the 100 simulated trees with 1250 tips obtained using 
0.004 for the slope relating speciation and the trait to obtain 
three new sets of trees, one with 50 tips, other with 100 tips 
and the last with 250 tips. We did this 10 times to account 
for stochastic effects of random pruning. For example, if in 
the process of random pruning we keep only species with 
similar values of the trait, most likely we will obtain no rela-
tionship between speciation and the trait when in fact there 
is trait-dependent diversification. Therefore, in this case we 
would obtain a low power for the function but due to the data 
and not the function itself. By replicating this pruning pro-
cess, we assure that we get distinct sets of pruned trees and 
address this possible bias. This resulted in 10 replicates of 
a new set of 100 pruned trees (i.e. pruned from the original 
tree size of 1250 tips) with 50 tips, 10 replicates of a new 
set of 100 pruned trees with 100 tips and 10 replicates of a 
new set of 100 pruned trees with 250 tips. We then repeated 
the power analyses.

To our knowledge, there is no straightforward way to 
simulate datasets with state-dependent diversification when 
speciation depends on more than one trait simultaneously. 
We believe that such simulation would require a dedicated 
paper. Here we addressed this issue in three steps. First, we 
simulated a new set of 100 trees with trait-dependent diver-
sification for each tree size (i.e. 50, 100, 250, 1250 tips) as 
described above, using the diversitree package in R. As for 
the single regression case, we get a phylogeny and a trait 
(here we will refer to it as trait A) that evolved with specia-
tion following a linear function relating speciation rate to 
trait values with different slopes (i.e. 0.004, 0.04 and 0.4). 
Second, we simulated a new trait (i.e. trait B) for each phy-
logeny using the mvMORPH v1.1.3 package in R (Clavel 
et al., 2015). Third, we kept this set (i.e. phylogeny, trait A 
and trait B) if, and only if, speciation is correlated with trait 
B. We tested for the relationship between speciation rates 
and trait B using the ES-sim function given that its low false-
discovery rates have been demonstrated before for single 
regression models (Harvey & Rabosky, 2018). In this man-
ner, we obtained a simulated dataset for different tree sizes 
in which both traits A and B are correlated with speciation. 
Then, we repeated the power analyses using ES-sim-GLM 
for multiple regression models and calculated the proportion 
of datasets for which the function correctly identified state-
dependent diversification for both traits.

False Discovery Rates

We performed false discovery rates (FDR) analyses for sin-
gle and multiple regression ES-sim-GLM models to avoid 
estimating false positives. First, we used the 63 datasets 
simulated in Harvey and Rabosky (2018). Each dataset rep-
resents a different scenario without state-dependent diversi-
fication (details in Harvey & Rabosky, 2018). The lower the 
proportion of datasets for which ES-sim-GLM incorrectly 
identifies trait-dependent diversification (i.e. P < 0.05), the 
lower the FDR. Second, to address if ES-sim-GLM had low 
FDR with the data from the study case, we simulated 9 traits 
without trait-dependence (i.e. neutral) on the Liolaemidae 
tree (section ‘Liolaemidae Data’; Esquerré et al., 2019), fol-
lowing Harvey and Rabosky (2018). We simulated each trait 
under a different evolutionary scenario: (i) ‘1cladefixed’: 
Brownian motion with one randomly selected clade (> 10% 
of the total number of tips) fixed for a single trait value from 
one of its tips; (ii) ‘1cladenosignal’: Brownian motion over-
all but with one randomly selected clade lacking phyloge-
netic signal; (iii) ‘BM’: Brownian motion; (iv) ‘BMjump’: 
Brownian motion with a jump in the mean values in one 
random clade; (v) ‘BMmultirate’: Brownian motion with 
one rate shift in a randomly selected clade; (vi) ‘discre-
tetrait’: one shift between two discrete trait distributions; 
(vii) ‘nosignal’: no phylogenetic signal in the trait; (viii) 
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‘OUstrong’: Ornstein–Uhlenbeck process with a single opti-
mum and "strong" pull; (ix) ‘OUweak’: Ornstein–Uhlenbeck 
process with a single optimum and "weak" pull (Table S1). 
Each represents a distinct trait evolution setting, decoupled 
from diversification rates. We simulated 1000 replicates for 
each trait on the Liolaemidae tree. We then performed FDR 
analyses on the ES-sim-GLM function.

To test for FDR in multiple regression modelling, we 
simulated a new set of nine traits without trait-dependence 
on the Liolaemidae phylogeny. By doing so, we were able 
to perform the FDR analyses on the ES-sim-GLM with pairs 
of traits that were decoupled from diversification rates. We 
performed the FDR analyses on the ES-sim-GLM function 
using the pairs of traits and the same evolutionary scenarios 
that we describe above. The lower the proportion of datasets 
for which ES-sim-GLM incorrectly identifies trait-dependent 
diversification for both traits under analyses, the lower the 
FDR. For multiple regression models, we used two signifi-
cance levels as threshold (i.e. P < 0.05 and 0.1).

Liolaemidae Data

We focused on Liolaemidae and obtained phylogenetic data 
(Supplementary material 3) for 258 species from Esquerré 
et al. (2019), geographic range data (in kilometre squared) 
for 217 species from Roll et al. (2017) and snout-to-vent 
length data (in millimetres) for 293 species from Feldman 
et al. (2016). After matching all three datasets, we pruned 
the tree using ape v5.4–1 package in R (Paradis & Schliep, 
2019) to keep 216 species with both geographic range 
data and snout-to-vent length data available. Even though 
this represent approximately 67% of described liolaemids 
(numbers from Uetz et al., 2020), simulations showed that 
both ES-sim and ES-sim-GLM have high power for trees 
with sampling fractions of 20% (see below). Therefore, our 
overall results should not be strongly affected by incom-
plete taxon sampling. Additionally, the main objective of 
this study is to demonstrate the use of ES-sim-GLM to help 
explain ecological and evolutionary patterns.

We used the geographic range maps for the 216 Liolaemi-
dae species and calculated the geographic range size for each 
species. We extracted the overall area that each species occu-
pies using the rgdal v1.5–23 package in R (Bivand et al., 
2019). The geographic range size metric is the total area 
of each species polygon(s). Although this metric can yield 
overestimations (e.g. if geographic range maps extend out-
side the actual species range), we consider this is a suitable 
approach at the macroevolutionary framework of the study 
and should impact all species under analyses. Regarding the 
snout-to-vent length, we used this metric as a proxy of body 
size following standard procedure throughout the field (e.g. 
Mahler et al., 2010, 2013). We applied the natural logarithm 
to the geographic range size and body size (Fig. S2).

Speciation Rates and Sensitivity Analyses

We estimated speciation rates for each species of Liolaemi-
dae using the inverse of the equal-splits metric (Jetz et al., 
2012; Redding & Mooers, 2006; Supplementary material 2). 
However, the estimation of λ can be biased by incomplete 
taxon sampling (Harvey & Rabosky, 2018). To account for 
this bias, we estimated λ on the most comprehensive tree 
of Liolaemidae with 258 species (Esquerré et al., 2019). 
Then we examined the relationship between those λ values 
and the λ values we had obtained in the pruned tree with 
just 216 species. The two sets of λ values show a strong 
significant correlation (Pearson’s r = 0.95, P < 0.001; Fig. 
S3). Although the λ values for the tree with 258 species are 
significantly higher than those from the pruned tree with 216 
species (x ̅ = − 1.35 and x ̅ = − 1.43, respectively; t = − 4.67, 
df = 215, P < 0.001; Fig. S4), the effect size for these differ-
ences is small (Cohen’s d = 0.318). Alongside these marginal 
differences, the positive correlation between the two sets 
of λ values (Fig. S3) suggests that we are estimating faster/
slower rates for the same lineages using distinct approaches. 
Although we worked with 216 species due to data avail-
ability, we performed all analyses using the λ values that 
we calculated from the full tree with 258 species (Esquerré 
et al., 2019). This allowed us to account for incomplete taxon 
sampling (i.e. increased sample size) in the estimation of λ.

Statistical Analyses

We ran 2 single regression models (i.e. 1 for each metric) 
and 1 multiple regression models. We checked if both traits 
(i.e. ln-transformed geographic range size and body size) 
were not highly correlated to avoid multicollinearity. Both 
variables are not correlated with each other (Pearson’s 
r = − 0.09; P value = 0.177). The multiple regression model 
included the geographic range size and body size metrics, 
but did not consider the interaction between the two. The 
main goal of this study is to modify ES-sim and include mul-
tiple regression models, and for that purpose we combined 
only pairs of traits. We tested only linear models because 
initial graphical exploration of the data did not indicate 
non-linear relationships. We tested each model using 1000 
simulations.

Results

Simulation Analyses

ES-sim-GLM for multiple regressions performed strongly in 
terms of correctly identifying state-dependent diversifica-
tion. Except for one of the scenarios with two discrete traits 
(FDR = 0.054; Fig. 1), we obtained false discovery rates 
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below 0.021 in all cases when considering a significance 
level of 0.05 as a threshold. For a 0.1 significance threshold, 
all false discovery rates were below 0.087 (Fig. 1). Never-
theless, the power of ES-sim-GLM for multiple regression 
models was relatively low. The power peaked for intermedi-
ate tree size (i.e. 250 tips) with proportions of true positives 
ranging between 14 and 29%.

ES-sim-GLM for single regressions performed as well 
as or better than ES-sim for larger samples sizes (n = 250 
and 1250; Fig. 2). However, when the tree had few tips 
(n = 50) the two functions showed low power, especially 
for lower slopes of the relationship between speciation 
and the trait (0.004; Fig.  2). Still, ES-sim-GLM was 
more robust for intermediate and higher slopes of the 

relationship between speciation and the trait (0.04 and 
0.4; Fig. 2). For trees with 100 tips, ES-sim-GLM per-
formed better for higher slopes (0.4) while both functions 
performed similarly for lower and intermediate slopes 
(0.004 and 0.04; Fig. 2). When analysing datasets with 
50, 100 and 250 tips pruned from the full tree, ES-sim 
and ES-sim-GLM performed similarly (Fig. S5). Both 
functions (ES-sim and ES-sim-GLM) showed low power 
when using a subset with 50 tips (4% sampling fraction), 
with proportions of true positives below 50%. With a 
subset of 100 tips (8% sampling fraction) proportions of 
true positives were below 80% for ES-sim-GLM and 70% 
for ES-sim. However, when we increased this subset to 
250 tips (20% sampling fraction) these values improved 
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Fig. 1  False discovery rates of the ES-sim-GLM function in multiple 
regression modelling. False discovery rates were calculated as the 
proportion of datasets for which ES-sim-GLM incorrectly identifies 
trait-dependent diversification for two significance levels (0.05 and 
0.1). Each pair of points represents one of the 9 simulated datasets of 
the liolaemids-based simulations on the Liolaemidae tree (Esquerré 
et  al., 2019). Each scenario refers to a unique simulated diversifica-
tion scenario without trait-dependence. The 9 datasets represent dif-
ferent trait evolution settings. (i) ‘1cladefixed’: Brownian motion 
with one randomly selected clade (> 10% of the total number of 

tips) fixed for a single trait value from one of its tips; (ii) ‘1claden-
osignal’: Brownian motion overall but with one randomly selected 
clade lacking phylogenetic signal; (iii) ‘BM’: Brownian motion; 
(iv) ‘BMjump’: Brownian motion with a jump in the mean values 
in one random clade; (v) ‘BMmultirate’: Brownian motion with one 
rate shift in a randomly selected clade; (vi) ‘discretetrait’: one shift 
between two discrete trait distributions; (vii) ‘nosignal’: no phyloge-
netic signal in the trait; (viii) ‘OUstrong’: Ornstein–Uhlenbeck pro-
cess with a single optimum and "strong" pull; (ix) ‘OUweak’: Orn-
stein–Uhlenbeck process with a single optimum and “weak” pull
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significantly, ranging between 86 and 96% for ES-sim, 
and 91 to 100% for ES-sim-GLM (Fig. S5). ES-sim-GLM 
for single regression showed higher false discovery rates 
than ES-sim, with high proportions of false discovery 
rates in several scenarios without trait-dependence (Fig. 
S6).

Liolaemidae‑Based Simulations

Under different Liolaemidae-based simulations without 
state-dependent diversification, ES-sim-GLM showed 
false discovery rates below 0.05 for 4 out of the 9 data-
sets (Fig. S6). These include the following scenarios: 
66) ‘BM’; 67) ‘BMjump’; 68) ‘BMmultirate’; and 72) 
‘OUweak’. False discovery rates were below 0.08 for sce-
nario 65) ‘1cladenosignal’ and 0.1 for 70) ‘nosignal’. The 
highest values of false discovery rates for ES-sim-GLM 
single regression modelling were 0.22 for scenario 69) 
‘discretetrait’, 0.21 for scenario 64) ‘1cladefixed’ and 
0.13 for scenario 71) ‘OUstrong’.

Correlates of Speciation Rates in Liolaemidae

Speciation rates (λ) are heterogeneous among lineages 
(Fig. 3). Geographic range size and body size metrics 
also show high/low values dispersed throughout the phy-
logeny (Fig. 3). Speciation rates are best explained by a 
multiple regression linear model including the geographic 
range size metric and the body size metric  (AICW = 0.97). 
Considering these two variables together improved the 
model in relation to the single regression models involv-
ing each variable independently; the geographic range 
size metric  (AICW < 0.001; r2 = 0.05) and the body size 
metric  (AICW = 0.03; r2 = 0.16; Table 1). In the multiple 
regression model, the geographic range size metric shows 
a significant negative partial slope (− 0.05, P < 0.001), 
while the body size metric shows a significant but positive 
partial slope (1.38, P < 0.001). This indicates that smaller 
geographic range sizes favour higher speciation rates while 
an increase in species’ body size can accelerate speciation. 
This model explains ~ 19% of the variation in λ (Table 1).

Fig. 2  Performance of two tests 
of trait-dependent diversifica-
tion based on simulations with 
complete phylogenies in single 
and multiple regression model-
ling. Methods are compared 
under different models relating 
speciation rates and trait values. 
Intensity refers to the slope 
used in the simulations of the 
datasets. The two methods are: 
ES-sim (based on Pearson’s 
correlation) and ES-sim-GLM 
(Generalized Linear Model). 
We used four different tree 
sizes: 50, 100, 250, and 1250 
species
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Discussion

In this study we show that ES-sim, a simulation-based 
approach introduced by Harvey and Rabosky (2018), can be 

modified to test multiple regression modelling in scenarios 
with state-dependent diversification. We extended the ES-
sim approach to test simultaneously multiple correlates of 
species diversification and incorporated a different model 
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Fig. 3  From left to right: phylogeny of Liolaemidae lizards (n = 216) 
with the genera name highlighted for simplicity, inverse of the equal-
splits metric of speciation rates obtained from the full phylogeny 

(λ258), snout-to-vent length metric (SVL) and geographic range size 
metric (Range). Phylogeny is from Esquerré et al. (2019)
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(i.e. GLM). The single regression version of the method 
we highlight in this study—ES-sim-GLM—is robust to 
incomplete taxon sampling, has high power for moderate 
and large sized trees (n = 100, 250 and 1250) and low FDR. 
More importantly, ES-sim-GLM allows inclusion of multi-
ple variables in each model while maintaining low propor-
tions of false positives. However, we advise caution for the 
possibility of false negatives in multivariate modelling, and 
dataset-specific simulations (i.e. simulate neutral scenarios 
of trait evolution for a phylogeny of interest and check for 
the proportion of false-discovery rates) should be conducted 
to address any possible bias.

Phylogenies and species trait data can inform about trait-
dependent diversification scenarios. But to detect this rela-
tionship and avoid false positives, the diversification pro-
cess must be tightly related to a trait (and usually a single 
trait; Herrera-Alsina et al., 2019). If we consider a scenario 
in which diversification depends on not one but two traits 
simultaneously, it should be even more difficult to detect 
trait-dependent diversification while avoiding Type I errors. 
We show that ES-sim-GLM under multiple regression mod-
elling (i.e. for two traits) performed well under different 
scenarios without trait-dependence and was robust to false 
positives (Fig. 1). In contrast, it performed relatively poorly 
in terms of power when compared with the single regression 
version of the method (Fig. 2). Multiple regressions with 
two independent variables show low power for small (n = 50 
and 100 tips) and large (n = 1250 tips) trees, with its power 
peaking at intermediate tree sizes (n = 250). Importantly, we 
argue that when ES-sim-GLM finds trait-dependent diver-
sification in multiple regression modelling it will almost 
certainly be true, although ES-sim-GLM might not always 
detect that signal in multiple regression scenarios.

ES-sim-GLM for single regression modelling often 
performed as well as or better than ES-sim in terms of 
power (Fig. 2 and S5). However, ES-sim-GLM showed 
higher false discovery rates in some scenarios without 
state-dependent diversification, although these rates were 
below 0.22 in all cases and below 0.1 in most scenarios 
(Fig. S6). Therefore, we recommend testing for high rates 
of false positives to avoid Type I errors when ES-sim-
GLM is used, especially in the single regression case. 

Also, caution should be taken with small sized trees. Our 
analyses showed low power in ES-sim-GLM in identifying 
trait-dependent diversification in trees with 50 tips. Never-
theless, ES-sim-GLM for single regression models showed 
high power when we considered at least 20% of sampled 
taxa on our simulations with trait-dependent diversifica-
tion (e.g. the phylogeny and trait data are available for 250 
species out of 1250 extant species; Fig. S5).

To illustrate the use of ES-sim-GLM for multiple 
regressions, we show that higher speciation rates in Liola-
emidae are best explained by the total geographic range 
size of each species and the body size of each species. 
These two traits together explained 19% of the variation 
in speciation rates. This can be seen as a small fraction 
of the variation in speciation. However, even if strong 
factors such as time could better explain speciation rates 
(Scholl & Wiens, 2016) or species richness (Li & Wiens, 
2019), there is an intrinsic value in understanding what 
other aspects of species’ biology and ecology are related 
to species’ diversification.

On one hand, the geographic range size each species 
occupies could be relevant for species diversification. For 
example, large range sizes can help buffer species from 
extinction, promote range fragmentation and ultimately 
allopatric speciation (Rosenzweig, 1995). However, if spe-
cies geographic range sizes are large enough relative to 
potential barrier sizes, large range sizes could actually act 
as a buffer for range fragmentation and reduce the likelihood 
of speciation events (Gaston, 1998). In such a scenario, spe-
ciation rates would be higher not for species with the largest 
distribution but for species with intermediate range sizes. 
For example, if species are mainly widely distributed rela-
tive to the barrier size, the species with the lower values of 
geographic range size will be more impacted by the poten-
tial effect of range fragmentation and subsequent speciation; 
the relationship between speciation and species geographic 
range size will be negative. This scenario might be the case 
for the family Liolaemidae. We found that on average the 
genus Phymaturus shows narrower geographic range sizes 
and faster speciation rates (Fig. 3). The Andean uplift had 
a strong role in the diversification of liolaemids (Esquerré 
et al., 2019). The fast Andean-orogeny promoted allopatric 

Table 1  ES-sim-GLM regression metrics and support for different models testing the relationship between speciation rates and traits in Liola-
emidae lizards

Models test the relationship between ln-transformed values of the inverse of the equal-splits metric (λ), the ln-transformed geographic range size 
metric (Range), and the ln-transformed snout-to-vent length metric (SVL). The Akaike Information Criterion (AIC) and AIC weights  (AICW) 
were used to compare the fit of models. P values are based on 1000 simulation replicates. Significant P values are boldfaced

λ ~ trait(s) Intercept Slope1 (P value) Slope2 (P value) r2 AIC AICw

Range − 1.374 (0.552) − 0.063 (< 0.001) – 0.048 496.288  < 0.001
SVL − 7.665 (< 0.001) 1.442 (< 0.001) – 0.160 469.255 0.031
Range + SVL − 7.420 (< 0.001) − 0.053 (< 0.001) 1.381 (< 0.001) 0.194 462.368 0.969
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speciation, but this mechanism could have impacted more 
strongly species with small to intermediate range sizes.

On the other hand, it is well established that smaller spe-
cies are more abundant than larger species in nature (e.g. 
Hutchinson, 1959). One hypothesis suggests that this occurs 
because larger species are younger and so had less time to 
diversify (Etienne et al., 2012). In fact, previous results 
suggest that there is no relationship between body size and 
diversification in lepidosaurs (Feldman et al., 2016). At a 
smaller scale, however, ecological opportunity has been 
shown to have a role in the Andean radiation of the genus 
Liolaemus, with body size negatively correlated with net 
diversification (i.e. speciation rates minus extinction rates; 
Pincheira-Donoso et al., 2015). This indicates that evolution 
towards larger body sizes decelerated speciation rates and/
or accelerated extinction rates. In contrast, we found that 
the evolution towards larger body sizes is positively related 
to speciation. This suggests a scenario in which the lack 
of spatial overlap among diversifying lineages (Pincheira-
Donoso et al., 2015)—which reduced the role of competi-
tion—favoured speciation towards larger body sizes follow-
ing ecological opportunity. Notwithstanding, more studies 
would be needed to disentangle the role of both speciation 
and extinction for the evolution of body size in the diversi-
fication of this clade. Overall, this should further the debate 
on how diversification operates in the Liolaemidae Andean 
radiation, specifically regarding the role of morphological 
evolution in the diversification of this clade.

Conclusions

In summary, we show that the ES-sim approach can be modi-
fied to include multiple regression models. Overall, these 
results should facilitate future studies that aim to understand 
diversification patterns across the Tree of Life. Our analyses 
using a new approach (ES-sim-GLM) support that species 
geographic range size and body size are significantly related 
to speciation in Liolaemidae. The simulation analyses in this 
study address the role of quantitative variables on specia-
tion rate, which has been one of the main purposes of trait-
dependent diversification methods (Harvey & Rabosky, 
2018).
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